Encapsulated Annealing: Enhancing the Plasmon Quality Factor in Lithographically–Defined Nanostructures
نویسندگان
چکیده
Lithography provides the precision to pattern large arrays of metallic nanostructures with varying geometries, enabling systematic studies and discoveries of new phenomena in plasmonics. However, surface plasmon resonances experience more damping in lithographically-defined structures than in chemically-synthesized nanoparticles of comparable geometries. Grain boundaries, surface roughness, substrate effects, and adhesion layers have been reported as causes of plasmon damping, but it is difficult to isolate these effects. Using monochromated electron energy-loss spectroscopy (EELS) and numerical analysis, we demonstrate an experimental technique that allows the study of these effects individually, to significantly reduce the plasmon damping in lithographically-defined structures. We introduce a method of encapsulated annealing that preserves the shape of polycrystalline gold nanostructures, while their grain-boundary density is reduced. We demonstrate enhanced Q-factors in lithographically-defined nanostructures, with intrinsic damping that matches the theoretical Drude damping limit.
منابع مشابه
Effect of Systematic Control of Pd Thickness and Annealing Temperature on the Fabrication and Evolution of Palladium Nanostructures on Si (111) via the Solid State Dewetting
Si-based optoelectronic devices embedded with metallic nanoparticles (NPs) have demonstrated the NP shape, size, spacing, and crystallinity dependent on light absorption and emission induced by the localized surface plasmon resonance. In this work, we demonstrate various sizes and configurations of palladium (Pd) nanostructures on Si (111) by the systematic thermal annealing with the variation ...
متن کاملSurface plasmon polariton microscope with parabolic reflectors.
We report the realization of a two-dimensional optical microscope for surface plasmons polaritons (SPPs) based on parabolic Bragg mirrors. These mirrors are built from lithographically fabricated gold nanostructures on gold thin films. We show by direct imaging by leakage radiation microscopy that the magnification power of the SPP microscope follows basic predictions of geometrical optics. Spa...
متن کاملAnalyzing the Optical Properties and Peak Behavior Due to Plasmon Resonance of Silver Cubic-Shape Nanostructures by Means of Discrete Dipole Approximation
In this article, the optical properties of silver cubic-shape nanostructures (SCNs) were analyzed by employing the discrete dipole approximation (DDA) in aqueous media. The absorption, dispersion and extinction cross-sections of these nanostructures were calculated based on the wavelength change of the incident light in the visible and near infrared region. Moreover, the height change, waveleng...
متن کاملDrude relaxation rate in grained gold nanoantennas.
The effect of grain boundaries on the electron relaxation rate is significant even for large area noble metal films and more so for plasmonic nanostructures. Optical spectroscopy and X-ray diffraction show a substantial improvement in plasmon resonance quality for square-particle nanoantennas after annealing due to an enlarged grain size from 22 to 40 nm and improved grain boundaries described ...
متن کاملEffects of Irregular Bimetallic Nanostructures on the Optical Properties of Photosystem I from Thermosynechococcus elongatus
The fluorescence of photosystem I (PSI) trimers in proximity to bimetallic plasmonic nanostructures have been explored by single-molecule spectroscopy (SMS) at cryogenic temperature (1.6 K). PSI serves as a model for biological multichromophore-coupled systems with high potential for biotechnological applications. Plasmonic nanostructures are fabricated by thermal annealing of thin metallic fil...
متن کامل